
UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

-

(

- -

,(N ASA-CR-12 5597) ON A
FOR GRAPH ALGORITHtlS PROGRAIUUNGLANGUAGE
al (Maryland Univ.) W.C. Rheinboldt, et
CSCL 09a Jun. 1971 44 P

IIV\ j (\D

RepROduced by 1
NATIONAL TECHNICAL l
INFORMATION SERVICE

Springfield, Va. 22151 _ j

],--

G3/0a

)

N72-18190

Unclas
18109

Technical Report TR-158
GJ-1067 and NGL-2l-002-008

June 1971

On a Programming Language for Graph Algorithms

by

Werner C. Rheinboldt
Victor R. Basili

Charles K. Mesztenyi

This research was supported in part by the National Science
Foundation and the National Aeronautics and Space Administration
under Grant GJ-1067 and Grant NGL-2l-002-008, respectively.

On a Programming Language for Graph Algorithms

by

Werner C. Rheinboldt, Victor R. Basili, and Charles K. Mesztenyi

Abstract

An algorithmic language, GRAAL, is presented for describing and

implementing graph algorithms of the type primarily arising in applica

tions. The language is based on a set algebraic model of graph theory

which defines the graph structure in terms of rnorphisms between certain

set algebraic structures over the node set and arc set. GRAAL is

modular in the sense that the user specifies which of these mappings are

available with any graph. This allows flexibility in the selection of

the storage representation for different graph structures. In line with

its set theoretic foundation, the language introduces sets as a basic

data type and provides for the efficient execution of all set and graph

operators. At present, GRAAL is defined as an extension of ALGOL 60

(Revised) and its formal description is given as a supplement to the

syntactic and semantic definition of ALGOL. Several typical graph algo

rithms are written in GRAAL to illustrate various features of the

language and to show its applicability.

On a Programming Language for Graph Algorithms1)

by

Werner C. Rheinbo1dt, Victor R. Basi1i, and Charles K. Mesztenyi2)

1. Introduction

During the past two decades, applications of graph theory have

become increasingly important in a surprising number of fields. To a

large extent, this has undoubtedly been caused by a growing trend

toward computational approaches in these disciplines.

For the implementation of a graph theoretical algorithm on a

computer, standard algorithmic languages, such as FORTRAN or ALGOL,

are, in general, rather unsuitable. In fact, they are neither we11-

adapted to expressing basic graph theoretical operations, nor to

describing and manipulating most of the data structures upon which these

operations are defined. Although list processing languages provide for

a more appropriate data structure, they tend to hide the graph theoretical

nature of the algorithms besides leading to slow execution and large

demands for storage. This points to the need for the development of

special-purpose languages which facilitate the programming as well as

the publication of graph algorithms.

l)This work was in part supported by Grant GJ-1067 from the National
Science Foundation and Grant NGL-21-002-008 from the National Aeronau
tics and Space Administration.

2)Al1 authors are with the Computer Science Center, University of
Maryland, College Park, Maryland 20742.

- 2 -

In this article we propose such a language-~named GRAAL (GRAph

Algorithmic Language)--for use in the solution of graph problems of the

type primarily arising in applications. These problems involve a wide

variety of graphs of different types and complexity. This may include,

for example, highly structured, directed or undirected graphs with

multiple arcs and self loops and with various functions defined over the

nodes and arcs, or very large, but sparse graphs in which only the adja

cency relations between nodes are of interest and no further information

is used. One of our objectives in the design of GRAAL was to allow for

this wide range of possibilities with as little degradation as possible

in the efficient implementation and execution of an algorithm designed

for a specific type of problem. Our second objective relates to the

earlier-mentioned need for a language which facilitates the design and

communication of graph algorithms independent of the computer. In line

with this we aimed at ensuring a concise and clear description of such

algorithms in terms of data objects and operations natural to graph

theory, that is, without introducing too many instructions required

mainly by programming considerations.

In order to meet these apparently conflicting objectives, GRAAL was

based on a strictly set algebraic model of graph theory which allows for

considerable flexibility in the selection of the storage representation

for different graph structures. The use of sets in graph algorithms is,

of course, entirely natural, if only to express such concepts as the

"set of all arcs incident with a node". However, in the development of

a set theoretic data structure for graphs one soon faces complications

- 3 -

with ordered pairs of elements as they arise, for instance, in the usual

definition of arcs as node pairs. In fact, either such pairs have to be

treated as independent data objects, which requires separate instructions

for them, or the Kuratowski definition (x,y) = {{x},{x,y}} has to be

employed, which leads to redundancies and the need for allowing sets

of sets. Childs [1968a/b] has described a rather general approach to

handling this problem. For the design of GRAAL we proceeded differently

by using a model of graph theory which avoids the need for ordered pairs

as well as for sets of sets. More specifically, the basic data objects

of GRAAL are the elements of the power sets of the node set and arc set

of a graph. Algebraic structures are imposed on these power sets and the

basic graph operators defining the structure of the graph represent mor

phisms between these algebraic structures. GRAAL is a modular language

in the sense that the user can specify which basic graph operators are

available for any graph. This is the reason for the mentioned possibility

of using various different storage representations for a graph structure

in line with the specific nature of the problem at hand.

In view of its general set theoretic foundation, GRAAL incorporates

sets as a new data type on the same level as integer, real, or Boolean

variables. In order to allow for an effective implementation of the

standard set operations, sets are assumed to contain only distinct elements

which are ordered by an internal key. This key constitutes the unique

internal identification for each basic element and each of these elements

can in turn be used in any graph as either a node or an arc. In addition

- 4 -

to the data type "set" a data structure "list" has also been provided

in GRAAL to allow stacking.

At present, GRAAL is defined as an extension of the revised ALGOL 60

language (Naur (ed.) [1963]). However, the language itself is relatively

independent of ALGOL and could be redefined in terms of other algorithmic

languages. In fact, a definition in terms of FORTRAN is now under way,

in preparation for a first implementation of GRAAL in the form of a modi-

fied FORTRAN compiler. An ALGOL compiler version is planned for later.

During the past years, various graph algorithmic languages have been

described in the literature. One of the earliest efforts along this line

appears to have been a language of Tabory [1962] which was based on

FORTRAN II and FLPL (FORTRAN-compiled List Processing Language). More

recently, Friedman et al. [1969] (see also Friedman [1968]) developed an

extension of LISP 1.5, called GRASPE 1.5, to allow graph processing on a

list processing system. Another list-processing oriented language, HINT,

has been described by Hart [1969]. The GTPL language of Read et a1. [1969]

(see also Read [1969]) is a system of FORTRAN II subroutines designed

primarily for use in conjunction with graph theoretical studies such as

the enumeration and cataloging of certain kinds of graphs and the analysis

of some of their properties. The graph language ALLA of Wo1fberg [1969],

[1970] is a part of an interactive graphics system designed to allow the

user to solve graph problems interactively with the aid of a display unit.
i

As an aid in his work on approaches and techniques for analyzing the

efficiency of graph algorithms, Chase [1970] developed a graph algorithmic

- 5 -

software package, GASP, consisting of a library of PL/l procedures and

of run-time macros. Last but not least, we mention Crespi-Reghizzi and

Morpurgo [1968],[1970] who defined their graph language, GEA, as an

extension of ALGOL 60.

Undoubtedly, there are other similar efforts not known to us. In

particular, our list does not include languages which operate only on

special types of graphs, such as the FORT~~-based TREETRAN system of

Pfaltz [1965] (revised [1970]) for the manipulation of rooted trees.

In Section 2 below we discuss the set theoretic foundation of GRAAL;

then Section 3 presents the syntactic and semantic definition of the

language as an extension of ALGOL 60; and finally, in Section 4 we give

several examples of typical graph algorithms written in GRAAL.

2. Set Theoretic Foundations

Throughout this section, capital letters X,S,T, etc. stand for

finite sets, and the basic set operations are indicated by the usual

symbols "u" (union), "Ii" (intersection), and

addition, we employ the symmetric sum

" " (difference) • In

S ~ T = (S-T) U (T_S) = (SvT) _ (SnT),

which some authors also call the symmetric difference of Sand T.

The cardinality of a set X is denoted by lXi, and P(X) is the

power set, that is, the set of all subsets of X. In addition, for

k = O,l, ..• ,/X/ we define

Pk(X) = {S e: P(X) I lsi = k}.

- 6 -

Thus, for instance, Po(X) contains only the empty set ~,and, if

X = {xl'~ •• 'Xn}' then the members of Pl(X) are the n atomic sets

hl},···,hn}·

For any set X, it is, of course, well-known that P(X) is a Boolean

algebra under the operations union, intersection, and set complementa-

tion (in X). More specifically, P(X) is a free Boolean algebra with

the Ixi members of PI (X) as generators.

A different algebraic structure for p(X) is obtained if we begin

with the equally well-known observation that under the symmetric sum

P(X) is an Abelian group with ~ as zero. Let GF(2) be the binary

Galois field consisting of the integers 0,1 under addition modulo two and

standard multiplication. Then with the definition of the scalar product

(2.1)

if A = 0

if A = 1

'Is £ P(X), A £ GF(2) ,

the Abelian group P(X) becomes a vector space over GF(2) in which now the

Ixi members of Pl(X) form a basis. It is sometimes useful to consider on

this space the nondegenerate (but semidefinite) symmetric bilinear function

(2.2)

__ { 1 if ISnTI is odd

(S,T)

o if IS~TI is even

vS, T £ P(X).

(
Let X,Y be two sets. We denote by B(X,Y) the class of all morphisms

~:P(X) + p(Y) between the Boolean algebras P(X) and P(Y). The members of

- 7 -

B(X,Y) shall be called Boolean mappings. Correspondingly, L(X,Y) is

defined as the class of all linear mappings ~:P(X) + p(Y) between the

vector spaces P(X) and P(Y).

It is we11-known--and easily verified--that any Boolean mapping

~ £ B(X,Y) can be written as

(2.3) ~s = \J ~{x} , V S £ P (X) ,
xES

and, conversely, that when the image sets ~{x} £ P(Y) are given for all

generators {x} £ P
1

(X) of P(X), then (2.3) defines a member of B(X,Y).

A corresponding result holds, of course, for any linear mapping

~ £ L(X,Y), that is, ~ is completely determined by the specification of

~{x} £ p(Y) for all basis elements {x} in P
1

(X) , and

(2.4) ~S = b ~{X}, V S £ P (X).
xES

Let G be a graph with node set V and arc set A. The elements

of P(V) and P(A) then constitute the basic data objects for all operations

on Gunder GRAAL. The structure of the graph is defined by certain

Boolean or linear mappings between the two power sets, and different kinds

of graphs are distinguished by the family of operators available for

them. From a computational viewpoint there may be an additional

distinction in terms of the storage representation used for the specific

graph structure. In the remainder of this section, we define the basic
~

graph operators presently included in GRAAL.

An undirected pseudograph is a triple G = (V,A,¢) consisting of a

vertex (or node) set V, an arc set A, and an incidence operator

- 8 -

(i) </> E: B(A, V)

(2.5)

V a E: A.

Thus, for any arc a, </>{a} is either the two-element subset of V

consisting of the two distinct endpoints of a, or an atomic subset of

V, in which case a is a self loop.

Following the terminology of Harary [1969] and others, we speak of

a mu1tigraph if in (2.5) the condition (ii) is replaced by

(ii') </>{a} E: P2(V) , ~ a E: A. The unqualified term graph is used

if, in addition, to (ii'), the restricted mapping </>:P
1

(A) ~ P2 (V) is

one-to-one.

For any undirected pseudograph G = (V,A,</» the star operator

is defined as the Boolean mapping

(2.6) cr E: B(V,A), cr{v} = {a E: A I v E: </>{a}}, Yv E: V.

Hence, for any node v, cr{v} is the set of all arcs of G which are

incident with v.

The star operator can be used to characterize the incidence

structure of G. For this, note first that cr has the following properties:

(i) cr E: B(V,A).

(2.7) (ii) P1 (A) c:: U cr{v}
VE:V

(iii) cr{u} ~ cr{v} n cr{w} =

u,v,w E: V.

¢ for any three distinct elements
(

- 9 -

Let now V and A be any sets and a any Boolean mapping which sat is-

fies the three conditions of (2.7). Then (2.5) holds for the operator

(2.8) ¢ E: B(A,V), ¢{a} = {v E: V I a E: a{v}}, Va E: A,

and evidently a is the star operator of the resulting pseudograph

G = (V,A,¢).

For the analysis of the topological structure of a pseudograph G

the Boolean mappings ¢ and a are not very convenient. The elements

of P(V) and P(A) correspond in a natural way to the O-chains and 1-chains

of G, respectively, and accordingly, we can define the standard boundary

operator a and coboundary operator 0 as the following linear mappings:

(2.9) =
{

¢f/J{a} if /Ha} I = 2

a E: L(A,V), a{a}

otherwise

Ya E: A,

(2.10)

Thus, a maps each arc into the set of its two endpoints, provided they

are distinct, and otherwise into the empty set. The set o{v} consists

of all arcs incident with v excluding any self loops.

Note that on a mu1tigraph G we have a{a} = ¢{a} for all a E: A

and o{v} = a{v} for all v E: V. Hence, the incidence structure of a mu1ti-

graph can be defined in terms of the boundary operator or the coboundary
(

operator.

- 10 -

It should be apparent that these definitions of the boundary and

coboundary operators are equivalent with their usual definitions in terms

of 0- and I-chains. Accordingly, all the standard results about these

operators are valid, such as the well-known formulae for the dimensions

of their kernels and ranges. Moreover, under the bilinear function (2.2)

we have

(2.11) (as,T) = (S,aT), Vs £ P(A) , T £ P(V),

that is, a and a are adjoint mappings.

If G is a graph, then each arc of G is uniquely determined by

the two element set of its endpoints. This means in essence that the

arcs are losing much of their own identity and hence that sometimes it

may be expedient to work exclusively with the nodes. For this we intro-

duce for a graph G = (V,A,¢) the adjacency operator

(2.12) a £ B(V,V),

Thus, a produces for each node v the set of all nodes u which form

with v the (distinct) endpoints of some arc of G.

The adjacency operator again characterizes the incidence structure

of the graph G. For this note that a has the properties

(2.13)

(i) a £ B (V, V)

(ii) v t a{v}, \I v £ V.

(iii) u £ a{v} if and only if v £ a{u}, Vu,v £ V.

- 11 -

If, conversely, V is any set and a any Boolean mapping for which

(2.13) holds, then the set

(2.14)

as well as the .mapping

(2.15) ¢ E B(A,V), ¢{a} = {u,v} if a = {u,v}, 'fa E A,

are well-defined. Moreover, G = (V,A,¢) is a graph and a is the adja

cency operator of G. We call the pair (V,a) the node form representation

of the graph G.

The definitions of the various operators are easily carried over to

directed graphs. A directed pseudograph shall be a quadruple G = (V,A,¢+,¢_,

consisting of a node set V, an arc set A, as well as a positive and

negative incidence operator

(2.16)

In other words, ¢+{a} and ¢_{a} are atomic subsets of P(V) consisting of

the initial and terminal nodes of a, respectively. In many cases, it is

convenient to use the combined incidence operator

(2.17)

As in the undirected case we speak of a directed multigraph if ¢{a} E P
2

(V),

for all a E A, and of a directed graph (digraph) if, in addition, (

¢:Pl(A) + P2 (V) is one-to-one.

- 12 -

The positive and negative star operators of the directed pseudo-

graph G are defined by

0"+ £ B(V,A), O"+{v} = {a £ A v = <p+{a}} , Vv £ V,

(2.18)

0" £ B(V,A), 0" {v} = {a £ A I v = <p_{a}} , 'Yv £ V,

and we introduce also the combined star operator

(2.19)

Thus, O"+{v} consists of all the arcs beginning in v and 0" {v} of those

terminating in that node. Again, it follows immediately that 0"+ and

0" can be used to characterize the incidence structure of a directed

pseudograph. For this, conditions (i) and (ii) of (2.7) have to hold for

both 0"+ and 0" and (iii) can be replaced by (iii') O"+{u} ~ O"+{v} = ~,

O"_{u} " O"_{v} = ~ for any u:f v in V.

The positive and negative boundary and coboundary operators of a

directed pseudograph are now those linear mappings which coincide with the

incidence and star operators on the appropriate family of atomic sets:

(2.20)

d+' d_ £ L(A, V), d+{a} = <p+{a} , d {a} = <p _{a} , V a £ A,

0+,0_ £ L(V,A), o+{v} = O"+{v}, °{v} = o_{v}, V V £ V.

It is then natural to define the combined mappings

l

(2.21)

- 13 -

Thus a{a} is again the set of the endpoints of a if these endpoints are

distinct, and the empty set, if they are not. Similarly, o{v} is once

more the set of all arcs incident with v excluding all self-loops. It

is also readily seen that our definitions of these boundary and coboundary

operators remain in agreement with the standard definitions s and hence

that all the usual results are valid also in the directed case. This in-

eludes, in particu1a~, the adjointness relation (2.11) for a and 0 which

now also holds for the corresponding negative and positive operator pairs.

Finally, we define for a digraph G = (V,A,¢+,¢_) the positive and

negative adjacency operators by the relations

(2.22)

0'.+, 0'._ e: B(V, V)

O'.+{v} = {u e: V 13a e: cr+{v}, u = ¢_{a}}, '" v e: V

cx_{v} = {u e: V /3a e: cr {v}, u = ¢+{a}}, V v e: V.

Then the combined adjacency operator

(2.23)

has again exactly the same meaning as in the undirected case. Moreover,

0'.+ and 0'. may be used to characterize the incidence structure of a

digraph. Here conditions (i) and (ii) of (2.13) have to hold for both

and (iii) is replaced by (iii') u e: O'.+{v} if and only if

9' u,V e: V. This defines the node form representation

- 14 -

3. Syntu·artd·Se.marttics·of·GRAAL

GRAAL is defined as an extension of ALGOL 60. The formal description

presented here is simply a supplement to the syntactic and semantic

definition in the Revised ALGOL Report (Naur (ed.) [1963]). Each of the

following subsections begins with some BNF grammar rules of ALGOL which

are extended in GRAAL. The extensions are the meta1inguistic symbols

appearing after the double slash <II). The rest of the subsection then

contains the syntactic definition of these new meta1inguistic variables

along with some examples and a verbal explanation of their semantics.

The grammatic rules of ALGOL unaffected by the definition of GRAAL are

not repeated here.

A. Declarations

Syntax

<type> ::= real I integer I Boolean II set I alpha

<declaration> ::= <type declaration> I <array declaration> I
<switch declaration> I <procedure declaration>"

<graph declaration> I <list declaration> I
<property declaration>

<graph declaration> ::= graph <graph list>

<graph 1ist>::= <graph specification> I <graph 1ist>,<graph specification>

<graph specification> ::= <graph identifier>[<integer>]

<graph identifier>[<string>]

<graph identifier> ::= <identifier>

- 15 -

<list declaration> ::= list <list 1ist>1

<local or own type> list <list list>

<list list> ::= <list identifier> I <list 1ist>,<list identifier>

<list identifier> ::= <identifier>

<property declaration> ::= property <property 1ist>1

<local or own type> property <property list>

<property list> ::= <property identifier> I
<property 1ist>,<property identifier>

<property identifier> ::= <identifier>

Examples

set A,B,C;

graph G[l],H['directed pseudograph'];

real list a;

set list SL;

real property capacity;

set property L;

Semantics

Two new data types are introduced. The alpha variable represents the

normal alphanumeric variable already available in most implementations of

algebraic languages. In GRAAL, sets constitute a new basic data type

rather than a data structure. An atomic set is a set consisting of one

item, and any set is either empty or a union of atomic sets; (see subsec

tion C below).

- 16 -

There are three new data structures, namely, graphs, lists, and

properties. Graphs represent specific data structures together with

certain operations for manipulating them. The graph declaration

identifies the type of data structure used and the family of graph

operators available with it. The language is modular in the sense that,

in general, only some of the possible graph operators are usable with

any specific graph. Four modules are presently defined in the language;

they are identified in subsection C below.

A list is a doubly-open, linked list structure which may be used

as a stack or a queue. Its order is established by the sequence in

which the user links the values of the variables of the declared type.

It offers a locally dynamic alternative to the array for storing

variables.

A property may be associated with any atomic set. The property

declaration establishes the type of the property. When no type declara-

tor is given, the real type is understood. The property for a particular

atomic set exists and may be referenced only after it has been assigned

a value (i.e., storage for a property of an atomic set is dynamically

allocated). If a property is referenced which does not exist for the

specified atomic set, then a default value is returned. For alpha

properties this will be blank, for set properties empty, for Boolean

properties false, and for real as well as integer properties, the largest
C

available machine number. The standard function check included in sub-

section H below uses these default conditions to test for the existence

of a property for a given atomic set.

- 17 -

B. Variables

Syntax

<variable> ::= <simple variable> I <subscripted variable>"

<property variable>

<property variable> ::= <property identifier>. «variable»

Examples

capacity.(x) := 2.3

m : = label. (y)

Semantics

The new property variable resembles the subscripted variable in

that it requires an argument. This argument is enclosed between the

"dotted" left parenthesis '.('and the right parenthesis')'; it must be

an atomic set. If a nonatomic set is referenced in the argument, the

first element of that set is taken as the default argument (see sub

section C below for the ordering of sets). The value of the property

variable is not defined if any argument other than a set variable is

specified.

C. Assignment Statement

Syntax

<assignment statement> ::= <left part list><arithmetic expression> I
<left part list><Boolean expression> II
<left part list><set expression> I
<left part list><list expression> I
<left part list> empty

- 18 -

<expression> ::= <arithmetic expression> I <Boolean expression> I
<designational expression> II <set expression> I
<list expression>

<set expression> ::= <set union> I <set expression> _ <set union>

<set union> ::= <set sum> I <set union> U<set sum>

<set sum> ::= <set intersection> I <set sum> ~ <set intersection>

<set intersection> ::= <set primary> I <set intersection> ~ <set primary>

<set primary> ::= <variable> I «set expression» I <function designator> I
<subset operator designator> I <graph operator designator> I
<atomic set operator designator>

<subset operator designator> ::= subset «simple variable>,

<Boolean expression»I

subset «simple variable> in <set expression>,

<Boolean expression»

<atomic set operator designator> ::= create I
create «atom definition list»I

~ «simple arithmetic expression»

<atom definition list> ::= <atom definition> I
<atom definition list>,<atom definition>

<atom definition> ::= <property identifier>:<variable>

- 19 -

<graph operator designator> ::= <graph structure designator> I
<basic graph operator designator>

<graph structure designator> ::= <structure operator>«set expression>,

<graph identifier»

<structure operator> ::= <mod 1 structure operator> I
<mod 2 structure operator> I
<mod 3 structure operator> I
<mod 4 structure operator>

<mod 4 structure operator> ::= adj

<mod 3 structure operator> ::=~ nadjl

<mod 4 structure operator>

<mod 2 structure operator> ::= inc I star I bd I cob

<mod 1 structure operator> ::= pinc I ninc I pstar I nstarl

pbd I nbd I pcob I ncobl

<mod 2 structure operator>

<basic graph operator designator> ::=

<basic graph operator> «graph identifier»

<basic graph operator> ::= <mod 1 basic graph operator> I

<mod 2 basic graph operator> I

<mod 3 basic graph operator> I
<mod 4 basic graph operator>

- 20 -

<mod 1 basic graph operator> ..- <mod 2 basic graph operator>..-

: := ~I nodes

<mod 3 basic graph operator> : := <mod 4 basic graph operator>

: := nodes

<list expression> ::= <list element> I <list expression> 0 <list element>

<list element> ::= <number> I <variable> I <list identifier> I
«expression» I <function designator> I <list operator designator>

<list operator designator> ::= <list operator> «list expression»

<list operator> ::=! I fd I ! I id

Examples

S := XU Y ('l C - D t:. M

L := bd(X,G) 1"1 cob(Y,G)

M := nodes (G)U~ (G)

S := subset (x in star (Y,G), capacity. (x) > 0)

x := create (name: i, capacity: k)

S := S l.J create

X := atom (1) V atom (2) U atom (i+l)

S := subset (x, cap. (x) > 0 V cap. (x) < 20)

L := Loa 0 3 0 (a+b) 0 cap. (x)

L := L 0 K 0 M

Semantics

A set expression is a rule for creating, referencing, and manipu~ating

sets. Each atomic set carries a sequence number which is assigned to

it at the time of its creation. A set is a union of atomic sets

- 21 -

ordered in ascending order of their sequence number. This ordering

allows for an efficient manipulation of sets. All sequence numbers

assigned to atomic sets are retained in an element sequence.

This is an ordered internal structure serving the dual purpose of

cataloging the atomic sets which have been created so far and of

providing the linkage between an atomic set and the properties which

are assigned to it. It is envisioned that the ith location of the

element sequence is the start of the list of property-value pairs

associated with the ith atomic set. A property-value pair is added

to the list when a value is assigned to a property for an atomic set

at execution time.

The create operator mayor may not include an argument. If given,

the argument is a list of pairs each consisting of a property and of a

variable designating a value for it. The element sequence is searched

for an atomic set for which all the named properties exist and are

presently assigned the specified values. If a (complete) match is

found the create operator returns the corresponding atomic set. If

no match (or only a partial match) occurs. a new element with the next

sequence number and with the stated property values is added to the

element sequence and an atomic set carrying this sequence number is

created and returned. If the create operator carries no argument, only

the last action occurs, that is, a new element with the next sequence
'-

number is added to the element sequence and an atomic set with this new

number is returned.

The atom operator returns the atomic set whose sequence number is

given by the arithmetic expression in its argument. If no atomic set

- 22 -

with this number exists or if the expression is not integer-valued, the

empty set is .returned.

The subset operator constructs a set consisting of atomic sets which

satisfy the specified Boolean expression. Depending on the form of

the argument of the subset operator, either all atomic sets cataloged in

the element sequence are tested or only those contained in the set

specified by the given set expression.

As stated earlier, different kinds (modules) of graphs are dis-

tinguished by the type of the data structure used to represent them and

by the family of graph operators provided with this structure. The

present four graph modules are distinguished only in terms of their

graph operators. Additional modules which mayor may not duplicate one

of the family of operators, but which refer to different data structures,

will be added in the implementation. The present four modules are

mod 1 'directed pseudograph', mod 2 'undirected pseudograph', mod 3

'directed graph in node form', and mod 4 'undirected graph in node form'.

The graph operators construct sets on the basis of a given graph

structure. The basic graph operators nodes or~ return the set con-

sisting of all atomic sets that were assigned either as nodes or as arcs

to a specified graph. The structure operators require as an argument

a set expression which designates either a set of nodes or of arcs of

}

the specified graph. The various possible operators were formally

defined in Section 2; those presently included in the language are the

incidence operator inc, the positive and negative incidence operators

pine and nine, the star operator star, the positive and negative star

operators pstar and nstar, the boundary operator bd, the positive and

- 23 -

negative boundary operator pbd and nbd, the coboundary operator cob,

the positive and negative coboundary operator pcob and ncob, the adja

cency operator adj, and the positive and negative adjacency operator

~ and nadj. If for any of these operators an argument set is

specified which contains an atomic set not belonging to the required node

or arc set of the graph, the empty set is returned as a default value.

The binary set operators have the standard set theoretic meaning.

In increasing precedence order they are difference (-), union (U),

symmetric sum (~), and intersection (~). The ord~ring of sets makes

the execution of these operations fairly efficient.

The semantic interpretation of the ALGOL assignment statements

remains valid for the extended definition of these statements in GRAAL.

In particular, the type associated with all variables and procedure

identifiers of a left part list must be the same. Moreover, if the type

of the arithmetic expression differs from that associated with the

variables and procedure identifiers, appropriate transfer functions are

to be invoked. The specific form of the various new transfer functions

is left to the implementation. A reasonable possibility for transfers

between set type and real/integer type might be as follows: If x is

a set variable and y an integer or real variable, then the statement

x := y is equivalent with x := atom (entier(y», while y := x is(equi

valent with y := count (x) where count is a standard function defined

in subsection H. As in most algebraic languages, including ALGOL, the

- 24 -

copy rule applies to an assignment, i.e., in the simple set assignment

statement, S := T, a copy of r is assigned to S. Thus, each set

corresponds to a unique set variable.

As stated earlier, a list structure is basically a stack or a queue.

To build the list, items are concatenated together. When a list of n

items is concatenated with a list of m items, the resulting list

contains n+m items. To remove items from a list, there are four

operators:f returns the first item of a list, while fd yields this

first item and deletes it from the list; similarly ! returns the last

item of a list, and ~d gives the last item and deletes it from the

list. A list must be declared as to type; if no declarator is given,

the real type is understood. A list operates similar to an array in

that a copy of each item is stored in it.

D. Unlabeled Basic Statement

Syntax

<unlabeled basic statements> ::= <assignment statement> I
<go to statement> I <dummy statement> I
<procedure statement> 1/ <link statement>

<link statement> ::= assign «graph identifier>,<link form»

detach «graph identifier>,<set expression»I

detach «graph identifier»

<link form> ::= <isolated node form> I <node graph form> I
<full graph form>

<isolated node form> ::= <node>

- 25 -

<node graph form> ::= <node><directiona1><node>

<full graph form> ::= <node><directiona1><node> to <arc>

<directional> ::= + I -
<node> ::= <arc> ::= <variable> I <atomic set designator>

Examples

assign (G,n1 + n2 to a1);

assign (G, n - m);

assign (G,n)j

detach (H, S uT);

detach (G);

Semantics

The assign operator constructs the incidence structure of a graph.

This graph structure may be represented by defining some appropriately

chosen family of the graph structure operators as a set property of each

node or arc in that graph. The full link form contains three atomic

sets and specifies that in the given graph the last one of these is to

be an arc with the first two as its endpoints. The connection may be

specified as directed, using '+', or as undirected, using ,_, Isolated

nodes may be inserted by listing only one atomic set. If the graph was

declared to be in node form, the arc specification is deleted, and when

included it is ignored. The assign statement is not executed if the

specified assign action was taken earlier. If an arc is speci-

fied which was assigned earlier to different endpoints the earlier assign

action is superseded by the later one. The assign statement is treated

as a dummy statement if any of the sets contained in the link form is

empty or nonatomic, or if the specified assign action is not permitted

- 26 -

for the particular graph module.

The detach statement allows the deletion of specified parts from

the incidence structure of a graph. In sequence, for each atomic set

contained in the specified set one of the following steps are taken:

If the element is an arc of the given graph, this arc is removed; if

it is a node, this node is removed as well as all arcs incident with

it; and if neither case applies, the element is bypassed. If no set is

specified, then all nodes and arcs are removed from the graph.

E. Statement

Syntax

<statement> ::= <unconditional statement> I <conditional statement> I
<for statement> " <for all statement>

<removal statement>

<conditional statement> ::= <if statement>/

<while statement> I

<if statement> else <statement> I <if clause><for statement>

<label>: <conditional statement> II
<if clause><for all statements>

<for all statement> ::= <for all clause><statement> I
<label> : <for all statement>

<for all clause> ::= for all <for all element> do

<for all element> ::= <set for all element> I <list for all element>

<set for all element> ::= <variable> in <set expression>

<list for all element> ::= <variable> in <list expression>

<while statement> ::= <while clause><statement>/

<label> : <while statement>

<while clause> ::= while <Boolean expression> do

- 27 -

<removal statement> ::= delete «set expression»I

erase «property identifier>,<set expression»I

erase «property identifier»

Examples

for all x in X" Y do if capacity. (x) > 0 then M := Mvx;

for all i in List do n := n+l;

while..., (S ~ T) do T := S;

delete (nodes (G) u~ (G»;

erase (capacity, S);

erase (length);

Semantics

The for all clause causes the statement S which follows it to be

executed zero or more times, once for each element in the specified set

or list. The dummy variable in the for all clause takes on as its value

the value of every element in the set or list, one at a time in sequen~e.

The while clause causes the statement S which follows it to be executed

zero or more times, as long as the value of the Boolean expression is

true. Control passes to the next statement when tbevalue of the Boolean

expression is false. The erase statement removes the specified property-

value pair from all members of the given set. If no set is specified, the

property is removed from all the atomic sets for which it exists. The

delete statement removes all atomic sets in the designated set as well as

their associated properties from the catalog in the element sequence. If

a removed atomic set is referenced, an error condition occurs.

empty

- 28 -

F. Boolean Primary

Syntax

<Boolean primary> ::= <logical value> I <variable> I
<function designator> I <relation> I
«Boolean expression» II <set relation>

<set relation> ::= <extended set expression>

<set relational operator><extended set expression>

<extended set expression> ::= <set expression>

<set relational operator> ::= = I ~ I ~ I 2

Examples

X~Y

X = y

y :/: empty

capacity.(x) = 2

Semantics

The metalinguistic variable <Boolean primary> has been extended to

include relations among sets. The set relational operators equal (=),

not equal ("'), contained in (~ or 2). In this connection the set

expression has been extended to include empty in order to check if a

set is empty.

- 29 -

G. Procedures

label I switch

Syntax

<specifier>- string <type> I array ! <type> array I
procedure I ~> procedure II

list I <~ list I property I~ property!

graph

<actual parameter> ::= <string> I <expression> I <array identifier>/

<switch identifier> I <procedure identifier> II
<property identifier> ! <graph identifier>

Examples

procedure test (G, capacity, List);

real list List; graph G; integer property capacity;

set procedure S(G,T,A);

graph G; set T; array A;

test (Graph, Property, List)

X := S(Graph, Set, Array) U M

Semantics

The specifiers required in procedure and function declarations,

as well as the actual parameters needed for the corresponding statements,

have been extended in a normal way to include the new data types and

structures.

- 30 -

H. Standard Functions

Add to the list of standard functions:

1I1aXcount

count (S)

index (x,T)

size (T)

parity (T)

for the number of elements in the set of list T

which is true if size (T) is odd, else false,

where T is a set or list

which returns the index of the place taken by the

element x in the set or list T

which returns the ith element of the set or list T

which is true if the property variable f is

defined on the set S and false otherwise

which returns the sequence number of a given

atomic set S. If S is not an atomic set,

it returns the sequence number of its first

element

returns the sequence number of the last atomic

set created

Each of these standard functions is programmable as a procedure in

elt (i,T)

check (f(S»

GRAAL.

- 31 -

4. Examples of GRAAL Programs

In this section we present several typical graph algorithms in the

form of GRAAL procedures. The principal aim here is to illustrate some

of the main features of GRAAL as they may be used in practice; accordingly,

no particular attempt was made to optimize the algorithms or even to

include all possible error checks.

GRAAL does not require any specific format for the input of a graph.

In fact, once typical input/output instructions have been added to ALGOL,

any of the standard methods of representing graphs may be used to read in

the structure. We give here only two simple examples.

procedure readone (G);

graph G;

comment The procedure assumes that the first record provides
the sizes n and m of the node and arc set and that then
m records are supplied each containing three integers. Any
such triple (k,i,j) satisfies 1 ~ k ~ m, 1 ~ i,j ~ nand
signifies that the kth arc has the ith node as initial, and
the jth node as terminal vertex;

begin integer n,m,k,i,j,~; set x;

read (n,m);

for ~=l step 1 until n+m do x := create;

for ~=l step 1 until m do

begin read (k,i,j);

assign (G, ~(i) -+ atom(j) to atom(n+k»

end

end

Note that the default feature for the assign instruction provides some

check for the validity of the input triples. A more extensive check may,

of course, be desirable.

- 32 -

procedure readtwo (G, name);

graph Gj alpha property name;

comment A read-in procedure 'read (buffer)' is assumed to be
available which allows the input of a variable-length record
of alphanumeric words into the alpha list buffer. The undirected
graph G is represented in node form and is read-in in terms of
paths, that is, as sequences of nodes forming paths in G. The
input is terminated with a record containing the single word
'last';

begin alpha list buffer; set x,y;

read (buffer);

while !(buffer) r 'last' do

begin x := create (name: fd(buffer»;

if buffer = empty

then assign (G,x)

else while buffer # empty do

begin y := create (name: fd(buffer»;

assign (G,x - y);

x := y

end;

read (buffer)

end

end

The next three examples concern the derivation of some simple new

graphs from an existing graph G. In all cases, G is assumed to be

an undirected pseudograph; for directed graphs only the assign instruc-

tions need to be changed.

procedure subgraph (G, N, SubG);

graph G, SubG; set N;

comment The procedure sets up the subgraph of G which has a given
set N of nodes of G as node set;

- 33 -

begin set S,x,y,a;

while N :f empty do

begin x := elt(I,N);

S := subset (a in star (x,G), inc (a,G) ~ N);

N := N - X;
if S = empty~ assign (Subg,x)

else for all a in S do------
begin y := inc (a,G) - x;

if Y = empty then y := x;

assign (Subg, x - y to a)

end

end

end

procedure linegraph (G, LineG);

graph G, LineG;

comment This procedure sets up the line graph of G, that is, the
graph which has the arcs of G as nodes and in which two nodes are
adjacent whenever the corresponding arcs of G are:

begin set S,R,x,a,b;

for all x in nodes (G) do

begin S := R := star (x,G);

for all a in S do----
begin 1£ x = inc (a,G) then assign (LineG, a-a to create);

R := R - a;

end

end

end

for all b in R do assign (LineG, a-b to create)

procedure condense (G,L, ConG,ref);

graph G, ConG; set list L; set property ref;

comment The list L is assumed to contain a family of sets represent
ing a partition of the node set of G. The procedure sets up a condensed
graph which has the members of L as nodes and in which two nodes are
adjacent if there is at least one arc between the corresponding sets
of nodes in G. The property 'ref' of the nodes of ConG remembers the
sets of L;

- 34 -

begin set S,T,x;

while L :f. empty do

begin S := fd(L);

x := create (ref: S);

assign (ConG,x);

foraH T in L·do

.!!. inc (star(S,G),G)",T :f empty then

assign (ConG, x - create (ref: T) to create)

end

end

The following four algorithms relate to the analysis of the topological

structure of a pseudograph. They apply equally well if the graph is

directed or undirected.

procedure cocycles (G,C);

graph G; set list C;

comment This procedure determines a basis for the cocyle space
by finding the node sets of all connected components of G;

begin set N,A,S,T;

N := nodes (G);

while N :f empty do

begin A := T := empty;

S := elt(l,N);

while S :f empty do

begin T := TuS;

A := star(S,G) - A',
S := inc(A,G) - T

end

C := CoT;

N := N .;. T

end

end

- 35 -

procedure spantree (G,u,Tree);

graph G, Tree; set u;

comment This procedure generates a directed
root u for the connected component of G

begin set S,T,w,x,y,a;

assign (Tree,u);

S := u;

T := cob(u,G);

while T ~ empty do

begin for all a in T do

begin w := bd(a,G);

y := w _ S;

spanning tree with
containing the node u;

ify ~ empty then begin S := Suy;

x := w - y;

assign (Tree, x-+y to

end

end;

T := cob(S,G)

end

end

a)

procedure fundcycles (G,Tree,Cycles);

graph G, Tree; set list Cycles;

comment 'Tree' is assumed to be a directed spanning tree of one of
the components of G. From this spanning tree this procedure
generates, in a standard manner, a basis for the cycle space of
the particular component;

begin set X,S,T,a;

X := star (nodes(Tree),G) _ arcs (Tree);

for all a in X do

begin S := a;

T := inc(a,G);

if size (T) ~ I then

- 36 -

while T 1 empty do

begin T := ncob(T,Tree);

if T 1 empty then

begin S := S ~ T;

T := pbd(T,Tree)

end

end;

Cycles := Cycles 0 S

end

end

procedure fundcut (G,Tree,Cuts);

graph G,Tree; set list Cuts;

comment Again 'Tree' is assumed to be a directed spanning tree
of a component of G, and from 'Tree' this procedure generates
in the standard manner a basis of the coboundary space of the
component;

begin set a,S,T;

for all a in arcs (Tree) do

begin S := empty;

T := a;

while T 1 empty do

begin S := Sunbd(T,Tree);

T := pcob(S,Tree) ~ T

end;

~: Cuts := Cuts 0 cob(S,G);

end

end

Note that instead of the statement ~, it might be more efficient to store

in 'Cuts' merely the node sets S and to generate the actual cut sets

cob (S,G) only when needed.

- 37 -

We end this section with a larger program to show the interplay

between different features of GRAAL. For this we chose a shortest-path

algorithm given by Pohl [1969] involving a bidirectional search.

procedure shortpath (G,start,term,length,inf,m,path);

graph G; set start, term; real property length; real inf, m;

set lis t path;

comment G is a digraph in which each arc has a given nonnegative
length. The procedure finds a shortest path from node 'start' to
node 'term' and returns it in the list 'path'. If no such path
exists, the list will be empty. The real number 'inf' represents
infinitYi it is assumed to be larger than the sum of the length
of all arcs of G. The length of the final path will be in m,
and this number will be equal to inf, if no path exists;

begin set S,SR,T,TR,w,x,y,z,u;

real property sdist, tdist;

set property in, out;

boolean flag; real a,b, smin, tmin;

comment The notation is as follows:

S (or T) set of nodes reached from 'start' (or 'term')

SR (or TR) nodes not in S (or T) but reachable therefrom

along one arc

sdist.(x) (or tdist.(x» current distance between 'start'

(or 'term') and x

in. (x) (or out. (x» current arc leading to (or from) x

smin (or tmin) minimal distance from 'start' (or 'term')

to SR (or TR);

comment Initialization;

sdist.(start) := tdist.(term) := 0;

S := SR := start;

T := TR := term;

smin := tmin := 0;

flag := false;

m := 0;

- 38 -

comment Insert a fictitious arc w from 'start'to 'term'
with length info This ensures that there is at least one
path between these two nodes;

w := create;

1ength.(w) := inf;

assign (G, start ~ term to w);

comment Test for completion and decision to proceed either
from 'start' or 'term';

decide: if m := inf then .S£ to nopath;

if flag then ~ to found;

if smin (: tmin then ~ to fromstart else ~ to fromterm;

comment Proceed from start and find minimal distance in SRi

fromstart: m := inf;

path := empty;

for all x in SR do

begin if check (sdist.(x» then a := sdist.(x) else a := inf;

if a < m then begin m := a; path := x end

else if a = m then path : = x 0 path

end·--,
smin := m;

comment Transfer set memberships and determine current
distances and in arcs;

for all x in path do

begin if (-,flag) 1\ (x !: T) then begin flag := true; u := x

end;

SR := SR - x;

S := S u x;

for all z in pcob (x,G) do----
begin y := nbd (z,g);

b := m + length. (z);

if check (sdist.(y» then a := sdist. (y) else a := inf;

- 39 -

if a > b then begin sdist.(y) := b;

in. (y) : = z;

SR := SR u y

end

end

end·--,
~ to decide;

comment. Proceed from 'term';

fromterm: m := inf;

path := empty;

for all x in TR do

begin if check (tdist.(x)) then a := tdist.(x) else a := inf;

if a < m then begin m := a; path := x end

else if a = m then path := x 0 path

end---,
tmin := m;

for all x in path do

begin if (-, flag) 1\ (x ~ S) then begin flag := true; u := x end;

TR := TR - x;

T := Tux;

for all z in ncob (x,G) do

begin y := pbd (z,G);

b := m + length. (z);

if check (tdist.(y)) then a :=tdist.(y) else a := inf;

if a > b then begin tdist.(y) := b;

out. (y) := z;

TR := TR u y

end

end

end,
--'
~ to decide;

- 40 -

nopath: path := empty;

.&£. to exit;

comment Breakthrough, check for other nodes which have
been reached from both sides, then establish a shortest
path;

found: m := sdist.(u) + tdist.(u);

y := u;

for all

begin a

x in T /"\ (S U SR) do

:= sdist.(x) + tdist.(x);

if a < m then begin m := a; y := x end

end;

u := y;

path := u;

x := u;

while x ~ start do

begin z := in. (x);

y := pbd(z,G);

path := y 0 z 0 path;

x := y

x := U;

while x ~ term do

begin z := out. (x);

y := nbd(z,G);

path := path 0 z 0 y;

x := y

end;

exit: remove (w)

end

- 41 -

5. References

Chase, S. [1970]. Analysis of algorithms for finding all spanning trees
of a graph, Department of Computer Science Report 401, Univ. of
Illinois, Urbana, Illinois.

Childs, D. [1968a]. Feasibility of a set-theoretic data structure
-- a general structure based on a reconstituted definition of a
relation, Proc. IFIP Congress 68, 162-172.

Childs, D. [1968b]. Description of a set-theoretic data structure,
Proc. Fall Joint Computer Conference 68, 557-564.

Crespi-Reghizzi, S., and Morpurgo, R. [1968]. A graph theory oriented
extension of ALGOL, Calcolo 5, 1-43.

Crespi-Reghizzi, S., and Morpurgo, R. [1970]. A language for treating
graphs, Comm. ACM 13, 319-323.

Friedman, D. [1968]. GRASPE graph processing: a LISP extension, Computa
tion Center Report TNN-84, Univ. of Texas, Austin, Texas.

Friedman, D., Dickson, D., Fraser, J., and Pratt, T. [1969]. GRASPE 1.5,
a graph processor and its application, Department of Computer Science
Report RSl-69, Univ. of Houston, Houston, Texas.

Harary, F. [1969]. "Graph Theory", Addison-Wesley, Reading, Massachusetts.

Hart, R. [1969], HINT: a graph processing language, Institute for Social
Science Research Technical Report, Michigan State Univ., East Lansing,
Michigan.

Naur, P. (ed.) [1963]. Revised report on the algorithmic language
ALGOL 60, Comm. ACM 6, 1-17.

Nievergelt, J. [1970]. Software for graph processing, SIGSAM Bulletin
No. 14.

Pfaltz, J. [1965] (revised [1970]). TREETRAN - A FORTRAN IV subroutine
package for manipulation of rooted trees, Computer Science Center
Technical Report 65-23, Univ. of Maryland, College Park, Maryland.

Pohl~ I. [1969]. Bi-directional and heuristic search in path problems,
Computer Science Department Technical Report CS-136, Stanford Univ.,
Stanford, California.

- 42 -

Read, R., King, C., Cadogan, C., and Morris, P. [1969]. The application
of digital computer techniques to the study of graph-theoretical
and related combinatorial problems, Computer Centre Report on Pro
ject 1026-66, Univ. of the West Indies, Jamaica.

Read, R. [1969]. Teaching graph theory to a computer, in "Recent
Progress in Combinatorics", Academic Press, New Yor~ New York.

Tabory, R. [1962]. Premiers elements d'un language de programmation
pour Ie traitement en ordinateur des graphes, in "Symbolic Languages
for Data Processing", Gordon and Breach, New York, New York.

Wo1fberg, M. [1969]. An interactive graph theory system, Moore School
of Electrical Engineering Report 69-25, Univ. of Pennsylvania,
Philadelphia, Pennsylvania.

Wolfberg, M. [1970]. An interactive graph theory system, Technical
Report CA-7003-02ll, Massachusetts Computer Associates, Wakefield,
Massachusetts.

